
Table of Contents
Porting & Developing Applications..1

Porting & Developing: Overview..1
Endian and Related Environment Variables or Compiler Options...............................2
OpenMP..5

Compilers..9
Intel Compiler...9
GNU Compiler Collection...11

MPI Libraries...12
SGI MPT..12
MVAPICH..13

Math & Scientific Libraries..14
MKL...14
SCSL...18
MKL FFTW Interface...19

Program Development Tools...20
Recommended Intel Compiler Debugging Options...20
Totalview..23
Totalview Debugging on Pleiades...24
Totalview Debugging on Columbia..27
IDB...29
GDB...30
Using pdsh_gdb for Debugging Pleiades PBS Jobs..31

Porting to Pleiades...32
Recommended compiler options...32
With SGI's MPT...35
With MVAPICH..40
With Intel-MPI..42
With OpenMP..44
With SGI's MPI and Intel OpenMP..46
With MVAPICH and Intel OpenMP..48

Porting to Columbia...49
Default or Recommended compiler version and options...49
Porting to Columbia: With SGI's MPT..50
Porting to Columbia: With OpenMP...52
Porting to Columbia: With MPI and OpenMP..53

Porting & Developing Applications

Porting & Developing: Overview

DRAFT

This article is being reviewed for completeness and technical accuracy.

When you are in the process of developing a code or porting a code from another platform,
it is important that the code runs correctly and/or reproduces the results from another
platform.

These are some steps you can follow when developing or porting a code or when testing a
new version of a compiler.

General guidelines:

Start with small problem sizes and a few time steps/iterations so that you won't have
to wait in the queue for a long time just to check whether the program is running
correctly. Setting up your PBS script, data files, and getting the program to run
correctly can often be done with 10 minute jobs.

•

Use PBS' debug queue to get better turn-around time (q=debug).•
While porting, make the fewest changes possible in the code.•
Use the same data sets to compare results on both old and new platforms.•
Don't assume that an absence of error messages means the program is running
correctly on either the old or the new platforms.

•

Be attentive to porting user data files. Fortran FORM='unformatted' files cannot be
assumed to be portable.

•

Don't assume that the new platform is wrong and the old platform is right. Both might
be wrong.

•

Other useful information that helps you to port or develop a code on NAS HECC systems
can be found in subsequent articles.

Porting & Developing Applications 1

Endian and Related Environment Variables or Compiler
Options

DRAFT

This article is being reviewed for completeness and technical accuracy.

Intel Fortran expects numeric data, both integer and floating-point data, to be in native little
endian order, in which the least-significant, right-most zero bit (bit 0) or byte has a lower
address than the most-significant, left-most bit (or byte).

If your program needs to read or write unformatted data files that are not in little endian
order, you can use one of the six methods (listed in the order of precedence) provided by
Intel below.

Set an environment variable for a specific unit number before the file is opened. The
environment variable is named FORT_CONVERTn, where n is the unit number. For
example:

setenv FORT_CONVERT28 BIG_ENDIAN

No source code modification or recompilation is needed.

1.

Set an environment variable for a specific file name extension before the file is
opened. The environment variable is named FORT_CONVERT.ext or
FORT_CONVERT_ext, where ext is the file name extension (suffix). The following
example specifies that a file with an extension of .dat is in big endian format:

setenv FORT_CONVERT.DAT BIG_ENDIAN

Some Linux command shells may not accept a dot (.) for environment variable
names. In that case, use FORT_CONVERT_ext instead.

No source code modification or recompilation is needed.

2.

Set an environment variable for a set of units before any files are opened. The
environment variable is named F_UFMTENDIAN.

Syntax:

Csh: setenv F_UFMTENDIAN MODE;EXCEPTION

Sh : export F_UFMTENDIAN=MODE;EXCEPTION

3.

Endian and Related Environment Variables or Compiler Options 2

MODE = big | little

EXCEPTION = big:ULIST | little:ULIST | ULIST

ULIST = U | ULIST,U

U = decimal | decimal-decimal

MODE defines the current format of the data, represented in the files; it can be
omitted. The keyword "little" means that the data have little- endian format and will
not be converted. For IA-32 systems, this keyword is a default. The keyword "big"
means that the data have big endian format and will be converted. This keyword may
be omitted together with the colon.

EXCEPTION is intended to define the list of exclusions for MODE; it can be omitted.
EXCEPTION keyword (little or big) defines data format in the files that are connected
to the units from the EXCEPTION list. This value overrides MODE value for the units
listed.

Each list member U is a simple unit number or a number of units. The number of list
members is limited to 64. decimal is a non-negative decimal number less than 2**32.

The environment variable value should be enclosed in quotes if the semicolon is
present.

Converted data should have basic data types, or arrays of basic data types. Derived
data types are disabled.

Example:

setenv F_UFMTENDIAN big

All input/output operations perform conversion from big-endian to little-endian
on READ and from little-endian to big-endian on WRITE.

♦

setenv F_UFMTENDIAN "little;big:10,20"

or setenv F_UFMTENDIAN big:10,20

or setenv F_UFMTENDIAN 10,20

In this case, only on unit numbers 10 and 20 the input/output operations
perform big-little endian conversion.

♦

setenv F_UFMTENDIAN "big;little:8"♦

Endian and Related Environment Variables or Compiler Options 3

In this case, on unit number 8 no conversion operation occurs. On all other
units, the input/output operations perform big-little endian conversion.

setenv F_UFMTENDIAN 10-20

Define 10, 11, 12, ...19, 20 units for conversion purposes; on these units, the
input/output operations perform big-little endian conversion.

♦

Specify the CONVERT keyword in the OPEN statement for a specific unit number.
Note that a hard-coded OPEN statement CONVERT keyword value cannot be
changed after compile time. The following OPEN statement specifies that the file
graph3.dat is in VAXD unformatted format:

OPEN (CONVERT='VAXD', FILE='graph3.dat', FORM='UNFORMATTED',
UNIT=15)

4.

Compile the program with an OPTIONS statement that specifies the
CONVERT=keyword qualifier. This method affects all unit numbers using
unformatted data specified by the program. For example, to use VAX F_floating and
G_floating as the unformatted file format, specify the following OPTIONS statement:

OPTIONS /CONVERT=VAXG

5.

Compile the program with the command-line -convert keyword option, which affects
all unit numbers that use unformatted data specified by the program. For example,
the following command compiles program file.for to use VAXD floating-point data for
all unit numbers:

ifort file.for -o vconvert.exe -convert vaxd

6.

In addition, if the record length of your unformatted data is in byte units (Intel Fortran default
is in word units), use the -assume byterecl compiler option when compiling your source
code.

Endian and Related Environment Variables or Compiler Options 4

OpenMP

DRAFT

This article is being reviewed for completeness and technical accuracy.

OpenMP is a portable, scalable model that gives shared-memory parallel programmers a
simple and flexible interface for developing parallel applications for various platforms.

Intel version 11.x compilers support OpenMP spec-3.0 while 10.x compilers support
spec-2.5.

Building OpenMP Applications

The following Intel compiler options can be used for building or analyzing OpenMP
applications:

-openmp

Enables the parallelizer to generate multithreaded code based on OpenMP
directives. The code can be executed in parallel on both uniprocessor and
multiprocessor systems. The -openmp option works with both -O0 (no optimization)
and any optimization level of -O. Specifying -O0 with -openmp helps to debug
OpenMP applications.

Note that setting -openmp also sets -automatic, which causes all local, non-SAVEd
variables to be allocated to the run-time stack, which may provide a performance
gain for your applications. However, if your program depends on variables having the
same value as the last time the routine was invoked, your program may not function
properly. If you want to cause variables to be placed in static memory, specify option
-save. If you want only scalar variables of certain intrinsic types (integer, real,
complex, logical) to be placed on the run-time stack, specify option -auto-scalar.

•

-assume cc_omp or -assume nocc_omp

-assume cc_omp enables conditional compilation as defined by the OpenMP Fortran
API. That is, when "!$space" appears in free-form source or "c$spaces" appears in
column 1 of fixed-form source, the rest of the line is accepted as a Fortran line.

-assume nocc_omp tells the compiler that conditional compilation as defined by the
OpenMP Fortran API is disabled unless option -openmp (Linux) or /Qopenmp
(Windows) is specified.

•

-openmp-lib legacy or -openmp-lib compat

Choosing -openmp-lib legacy tells the compiler to use the legacy OpenMP run-time

•

OpenMP 5

library (libguide). This setting does not provide compatibility with object files created
using other compilers. This is the default for Intel version 10.x compilers.

Choosing -openmp-lib compat tells the compiler to use the compatibility OpenMP
run-time library (libiomp). This is the default for Intel version 11.x compilers.

On Linux systems, the compatibility Intel OpenMP run-time library lets you combine
OpenMP object files compiled with the GNUgcc or gfortran compilers with similar
OpenMP object files compiled with the Intel C/C++ or Fortran compilers. The linking
phase results in a single, coherent copy of the run-time library.

You cannot link object files generated by the Intel® Fortran compiler to object files
compiled by the GNU Fortran compiler, regardless of the presence or absence of the
-openmp (Linux) or /Qopenmp (Windows) compiler option. This is because the
Fortran run-time libraries are incompatible.

NOTE: The compatibility OpenMP run-time library is not compatible with object files
created using versions of the Intel compiler earlier than 10.0.

-openmp-link dynamic or -openmp-link static

Choosing -openmp-link dynamic tells the compiler to link to dynamic OpenMP
run-time libraries. This is the default for Intel version 11.x compilers.

Choosing -openmp-link static tells the compiler to link to static OpenMP run-time
libraries.

Note that the compiler options -static-intel and -shared-intel have no effect on which
OpenMP run-time library is linked.

Note that this option is only available for newer Intel compilers (version 11.x).

•

-openmp-profile

Enables analysis of OpenMP applications. To use this option, you must have Intel(R)
Thread Profiler installed, which is one of the Intel(R) Threading Tools. If this
threading tool is not installed, this option has no effect.

Note that Intel Thread Profiler is not installed on Pleiades.

•

-openmp-report[n]

Controls the level of diagnostic messages of the OpenMP parallelizer. n=0,1,or 2.

•

-openmp-stub

Enables compilation of OpenMP programs in sequential mode. The OpenMP

•

OpenMP 6

directives are ignored and a stub OpenMP library is linked.

OpenMP Environment Variables

There are a few OpenMP environment variables one can set. The most commonly used
are:

OMP_NUM_THREADS num

Sets number of threads for parallel regions. Default is 1 on Pleiades. Note that you
can use ompthreads in the PBS resource request to set values for
OMP_NUM_THREADS. For example:

%qsub -I -lselect=1:ncpus=4:ompthreads=4
Job 991014.pbspl1.nas.nasa.gov started on Sun Sep 12 11:33:06 PDT 2010
...
PBS r3i2n9> echo $OMP_NUM_THREADS
4
PBS r3i2n9>

•

OMP_SCHEDULE type[,chunk]

Sets the run-time schedule type and chunk size. Valid OpenMP schedule types are
static, dynamic, guided, or auto. Chunk is a positive integer.

•

OMP_DYNAMIC true or OMP_DYNAMIC false

Enables or disables dynamic adjustment of threads to use for parallel regions.

•

OMP_STACKSIZE size

Specifies size of stack for threads created by the OpenMP implementation. Valid
values for size (a positive integer) are size, sizeB, sizeK, sizeM, sizeG. If units B, K,
M or G are not specified, size is measured in kilobytes (K).

Note that this feature is included in OpenMP spec-3.0, but not in spec-2.5.

•

Note that Intel also provides a few additional environment variables. The most commonly
used are:

KMP_AFFINITY type

Binds OpenMP threads to physical processors. Avaiable type: compact, disabled,
explicit, none, scatter. For more information on the various types, see this Intel web
page.

There is a conflict between KMP_AFFINITY in Intel 11.x runtime

•

OpenMP 7

http://software.intel.com/sites/products/documentation/studio/composer/en-us/2009/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm#KMP_AFFINITY_Environment_Variable
http://software.intel.com/sites/products/documentation/studio/composer/en-us/2009/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm#KMP_AFFINITY_Environment_Variable

library and dplace, causing all threads to be placed on a
single CPU when both are used. It is recommended that
KMP_AFFINITY be set to disabled when using dplace.

KMP_MONITOR_STACKSIZE

Sets stacksize in bytes for monitor thread.

•

KMP_STACKSIZE

Sets stacksize in bytes for each thread.

•

For more information, please see the official OpenMP web site.

OpenMP 8

http://openmp.org/wp/

Compilers

Intel Compiler

DRAFT

This article is being reviewed for completeness and technical accuracy.

Intel compilers are recommended for building your applications on either Pleiades or
Columbia.

On Columbia, a system default version has been loaded automatically. On Pleiades, there
is no system default--you must load a specific module. Use the "module avail" command on
Pleiades to see what versions are available and load an Intel compiler module before
compiling. For example:

% module load comp-intel/11.1.072

Notice that when a compiler module is loaded, some environment variables, such as
FPATH, INCLUDE, LD_LIBRARY_PATH, etc., are set or modified to add the paths to
certain commands, include files, or libraries, to your environment. This helps to simplify the
way you do your work.

To check what environmant variables will be modified for a module, do, for example:

% module show comp-intel/11.1.072

On Columbia and Pleiades, there are Intel compilers for both Fortran and C/C++:

Intel Fortran Compiler: ifort (version 8 and above)

The ifort command invokes the Intel(R) Fortran Compiler to preprocess, compile,
assemble, and link Fortran programs.

% ifort [options] file1 [file2 ...]

Read man ifort for all available compiler options.

To see the compiler options by categories, do:

% ifort -help

•

Compilers 9

http://www.nas.nasa.gov/kb/Modules_115.html

fileN is a Fortran source (.f .for .ftn .f90 .fpp .F .FOR .F90 .i .i90), assembly (.s .S),
object (.o), static library (.a), or other linkable file.

Source Files Suffix Interpretation:

.f, .for, or .ftn : fixed-form source files♦

.f90 : free-form F95/F90 source files♦

.fpp, .F, .FOR, .FTN, or .FPP: fixed-form source files which must be
preprocessed by the fpp preprocessor before being compiled

♦

.F90 : free-form Fortran source files which must be pre-pro- cessed by the fpp
preprocessor before being compiled

♦

Intel C/C++ compiler: icc and icpc (version 8 and above)

The Intel(R) C++ Compiler is designed to process C and C++ programs on
Intel-architecture-based systems. You can preprocess, compile, assemble, and link
these programs.

% icc [options] file1 [file2 ...]
% icpc [options] file1 [file2 ...]

Read man icc for all available compiler options.

To see the compiler options by categories, do:

% icc -help

The icpc command uses the same compiler options as the icc
command. Invoking the compiler using icpc compiles .c, and .i
files as C++. Invoking the compiler using icc compiles .c and
.i files as C. Using icpc always links in C++ libraries. Using
icc only links in C++ libraries if C++ source is provided on
the command line.

fileN represents a C/C++ source (.C .c .cc .cp .cpp .cxx .c++ .i), assembly (.s), object
(.o), static library (.a), or other linkable file.

•

Intel Compiler 10

GNU Compiler Collection

DRAFT

This article is being reviewed for completeness and technical accuracy.

GCC stands for "GNU Compiler Collection". GCC is an integrated distribution of compilers
for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Java, Fortran, and Ada.

The GNU C and C++ compiler (gcc and g++) and Fortran compiler (gfortran) through the
Linux OS distribution are available on Pleiades and Columbia. The current version installed
(under /usr/bin) can be found with the following command:

% gcc -v
... gcc version 4.1.2 20070115 (SUSE Linux)

Newer versions of GNU compilers can be requested and installed as modules. Currently,
there is a gcc/4.4.4 module, which includes gcc, g++, and gfortran, available on Pleiades.

Read man gcc and man gfortran for more information.

GNU Compiler Collection 11

http://www.nas.nasa.gov/kb/Modules_115.html

MPI Libraries

SGI MPT

DRAFT

This article is being reviewed for completeness and technical accuracy.

SGI's Message Passing Interface (MPI) is a component of the Message Passing Toolkit
(MPT), which is a software package that supports parallel programming across a network of
computer systems through a technique known as message passing. It requires the
presence of an Array Services daemon (arrayd) on each host to run MPI processes.

SGI's MPT 1.x versions support the MPI 1.2 standard and certain features of MPI-2. The
2.x versions will be fully MPI-2 compliant.

On Columbia, the current system default version is mpt.1.16. A 2.x version will be available
when the operating system is upgraded to SGI ProPack 7SP1.

On Pleiades, there is no default version. You can enable the recommended version,
mpt.2.04.10789, by:

%module load mpi-sgi/mpt.2.04.10789
Note that certain environment variables are set or modified when an MPT module is loaded.
To see what variables are set when a module is loaded (for example,
mpi-sgi/mpt.2.04.10789), do:

%module show mpi-sgi/mpt.2.04.10789

To build an MPI application using SGI's MPT, use a command such as one of the following:

%ifort -o executable_name prog.f -lmpi
%icc -o executable_name prog.c -lmpi
%icpc -o executable_name prog.cxx -lmpi++ -lmpi
%gfortran -I/nasa/sgi/mpt/1.26/include -o executable_name prog.f -lmpi
%gcc -o executable_name prog.c -lmpi
%g++ -o executable_name prog.cxx -lmpi++ -lmpi

MPI Libraries 12

MVAPICH

DRAFT

This article is being reviewed for completeness and technical accuracy.

MVAPICH is open source software developed largely by the Network-Based Computing
Laboratory (NBCL) at Ohio State University. MVAPICH develops the Message Passing
Interface (MPI) style of process-to-process communications for computing systems
employing InfiniBand and other Remote Direct Memory Access (RDMA) interconnects.

MVAPICH software is typically used across the network of a cluster computer system for
improved performance and scalability of applications.

MVAPICH is an MPI-1 implementation while MVAPICH2 is an MPI-2 implementation
(conforming to MPI 2.2 standard) which includes all MPI-1 features.

MVAPICH1/MVAPICH2 are installed on Pleiades, but not Columbia. You must load in an
MVAPICH1 or MVAPICH2 module before using it. For example:

%module load mpi-mvapich2/1.4.1/intel

A variety of MPI compilers, such as mpicc, mpicxx, mpiCC, mpif77, or mpif90, are provided
in each MVAPICH/MVAPICH2 distribution. The correct compiler should be selected
depending on the programming language of your MPI application.

To build an MPI application using MVAPICH1/MVAPICH2:

%mpif90 -o executable_name prog.f
%mpicc -o executable_name prog.c

MVAPICH 13

http://www.nas.nasa.gov/kb/Modules_115.html

Math & Scientific Libraries

MKL

DRAFT

This article is being reviewed for completeness and technical accuracy.

The Intel Math Kernel Library (MKL) is composed of highly optimized mathematical
functions for engineering and scientific applications requiring high performance on Intel
platforms. The functional areas of the library include linear algebra consisting of LAPACK
and BLAS, fast Fourier transform (FFT), and vector transcendental functions.

MKL release 10.x is part of the Intel compiler 11.0 and 11.1 releases. Once you load in a
11.x compiler module, the path to the MKL library is automatically included in your default
path. If you choose to use Intel compiler 10.x or earlier versions, you have to load an MKL
module separately.

A Layered Model for MKL

Starting with MKL release 10.0, Intel employs a layered model for the MKL library. The
layers are:

Interface layer

LP64 interface (uses 32-bit integer type) or ILP64 interface (uses 64-bit
integer type)

♦

SP2DP interface

which supports Cray-style naming in applications targeted for the Intel 64 or
IA-64 architecture and using the ILP64 interface. SP2DP interface provides a
mapping between single-precision names (for both real and complex types) in
the application and double-precision names in Intel MKL BLAS and LAPACK.

♦

•

Threading layer

sequential

The sequential (non-threaded) mode requires no Compatibility OpenMP* or
Legacy OpenMP* run-time library, and does not respond to the environment
variable OMP_NUM_THREADS or its Intel MKL equivalents. In this mode,
Intel MKL runs unthreaded code. However, it is thread-safe, which means that

♦

•

Math & Scientific Libraries 14

http://www.nas.nasa.gov/kb/Modules_115.html

you can use it in a parallel region from your own OpenMP code. You should
use the library in the sequential mode only if you have a particular reason not
to use Intel MKL threading. The sequential mode may be helpful when using
Intel MKL with programs threaded with some non-Intel compilers or in other
situations where you may, for various reasons, need a non-threaded version
of the library (for instance, in some MPI cases).

Note that the *sequential.* library depends on the POSIX threads library
(pthread), which is used to make the Intel MKL software thread-safe and
should be listed on the link line.
threaded

The *threaded* library in MKL version 10.x supports the implementation of
OpenMP that many compilers (Intel, PGI, GNU) provide.

♦

Computational layer

For any given processor architecture (IA-32, IA-64, or Intel(R) 64) and OS, this layer
has only one computational library to link with, regardless of the Interface and
Threading layer.

•

Compiler Support Run-time libraries

libiomp

Intel(R) Compatibility OpenMP run-time library

♦

libguide

Intel(R) Legacy OpenMP run-time library

♦

•

For example, to do a dynamic linking of myprog.f and parallel Intel MKL supporting LP64
interface, use:

ifort myprog.f -Wl,--start-group -lmkl_intel_lp64 \
-lmkl_intel_thread -lmkl_core -Wl,--end-group -openmp

If you are unsure of what MKL libraries to link with, use the suggestion provided in this Intel
web site by providing the proper OS (e.g. Linux), processor architecture (e.g. Intel(R) 64),
compiler (e.g. Intel or Intel Compatible), dynamic or static linking, integer length, sequential
or multi-threaded, OpenMP library, cluster library (e.g. BLACS, ScaLAPACK), MPI library
(Intel MPI, MPICH2, SGIMPT, etc.).

The -mkl Switch of Intel Compiler Version 11.1

Starting from Intel compiler version 11.1, a -mkl switch is provided to link to certain parts of
the MKL library.

MKL 15

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

-mkl[=]
 link to the Intel(R) Math Kernel Library (Intel(R) MKL) and
 bring in the associated headers
 parallel - link using the threaded Intel(R) MKL libraries.
 This is the default when -mkl is specified
 sequential - link using the non-threaded Intel(R) MKL libraries
 cluster - link using the Intel(R) MKL Cluster libraries plus
 the sequential Intel(R) MKL libraries

The libraries that are linked in for

 * -mkl=parallel

 --start-group \
 -lmkl_solver_lp64 \
 -lmkl_intel_lp64 \
 -lmkl_intel_thread \
 -lmkl_core \
 -liomp5 \
 --end-group \

 * -mkl=sequential

 --start-group \
 -lmkl_solver_lp64_sequential \
 -lmkl_intel_lp64 \
 -lmkl_sequential \
 -lmkl_core \
 --end-group \

 * -mkl=cluster

 --start-group \
 -lmkl_solver_lp64 \
 -lmkl_intel_lp64 \
 -lmkl_cdft_core \
 -lmkl_scalapack_lp64 \
 -lmkl_blacs_lp64 \
 -lmkl_sequential \
 -lmkl_core \
 -liomp5 \
 --end-group \

Where to find more information about MKL

Man pages and two PDF files from Intel are available for each version of MKL.

Man pages of Intel MKL

A collection of man pages of Intel MKL functions are available under the man3
subdirectory (e.g., /nasa/intel/Compiler/11.1/072/man/en_US/man3) of the MKL
installation. You will have to load an MKL module or an Intel compiler 11.x module
before you can see the man pages. For example,

•

MKL 16

% module load comp-intel/11.1.072
% man gemm

provides information about [s,d,c,z,sc,dz]gemm routines.

Unfortunately, there does not appear to be a 'man mkl' page.

Intel MKL Reference Manual (mklman.pdf)

Contains detailed descriptions of the functions and interfaces for all library domains:

BLAS♦
LAPACK♦
ScaLAPACK♦
Sparse Solver♦
Interval Linear Solvers♦
Vector Math Library (VML)♦
Vector Statistical Library (VSL)♦
Conventional DFTs and Cluster DFTs♦
Partial Differential Equations support♦
Optimization Solvers♦

•

Intel MKL User's Guide (userguide.pdf)

Provides Intel MKL usage information in greater detail:

getting started information♦
application compiling and linking depending on a particular platform and
function domain

♦

building custom DLLs♦
configuring the development environment♦
coding mixed-language calls♦
threading♦
memory management♦
ways to obtain best performance♦

The two pdf files can be found in the 'doc' or 'Documentation' directory of the MKL
installation. For example, on Pleiades,

MKL version 10.0.011

/nasa/intel/mkl/10.0.011/doc

♦

The version included in the Intel compiler module 11.1.072

/nasa/intel/Compiler/11.1/072/Documentation/en_US/mkl

♦

•

MKL 17

SCSL

DRAFT

This article is being reviewed for completeness and technical accuracy.

SCSL is a comprehensive collection of scientific and mathematical functions that have been
optimized for use on the Altix systems such as Columbia . The libraries include optimization
of basic linear algebra subprograms (BLAS), a linear algebra package, signal processing
functions such as fast Fourier transforms (FFTs), and liner filtering operations and other
basic solver functions. More information can be found through 'man scsl'.

Starting with ProPack 5, SCSL is no longer supported by SGI.
Although SCSL is still available on Columbia (but not on Pleiades),
users are recommended to use Intel MKL instead.
SCSL version(s) available on Columbia systems:

scsl.1.5.0.0 (does not work properly with intel-comp.9.1.039)•
scsl.1.5.1.0•
scsl.1.5.1.1 (contains Scalapack in libsdsm.so)•
scsl.1.6.1.0•

To use SCSL, link one of the following libraries:

-lscs
-lscs_mp (for multi-threaded programs)
-lscs_i8
-lscs_i8_mp

SCSL 18

MKL FFTW Interface

DRAFT

This article is being reviewed for completeness and technical accuracy.

Some users have installed the FFTW library in their own directory (for example,
/u/user/bin/fftw) and would link to the FFTW library as follows:

ifort -O3
 -I/u/user/bin/fftw/include \
 -o fftw_xmpl.exe fftw_xmpl.f \
 -L/u/user/bin/fftw/lib -lfftw3

An MKL FFTW interface has been created for Intel compiler version 11.0.083 and later
versions. Users no longer have to keep their own copy of FFTW. Follow these steps to use
the MKL FFTW interface:

Load a compiler module 11.0.083 or a later version such as comp-intel/11.1.072

module load comp-intel/11.1.072

•

Compile and link

ifort -O3 \
 -I/nasa/intel/Compiler/11.1/072/mkl/include/fftw \
 -o fftw_xmpl.exe fftw_xmpl.f \
 -lfftw3xf_intel -lmkl_intel_lp64 -lmkl_intel_thread \
 -lmkl_core -lguide

•

MKL FFTW Interface 19

http://www.nas.nasa.gov/kb/Modules_115.html

Program Development Tools

Recommended Intel Compiler Debugging Options

DRAFT

This article is being reviewed for completeness and technical accuracy.

Commonly used options for debugging:

-O0
Disables optimizations. Default is -O2

-g
Produces symbolic debug information in object file (implies -O0 when another
optimization option is not explicitly set)

-traceback
Tells the compiler to generate extra information in the object file to provide
source file traceback information when a severe error occurs at run-time.

Specifying -traceback will increase the size of the
executable program, but has no impact on run-time
execution speeds.

-check all
Checks for all run-time failures. Fortran only.

-check bounds
Alternate syntax: -CB. Generates code to perform run-time checks on array
subscript and character substring expressions. Fortran only.

Once the program is debugged, omit this option to reduce
executable program size and slightly improve run-time
performance.

-check uninit
Checks for uninitialized scalar varaibles without the SAVE attribute. Fortran
only.

-check-uninit
Enables run-time checking for uninitialized variables. If a variable is read
before it is written, a run-time error routine will be called. Run-time checking of

•

Program Development Tools 20

undefined variables is only implemented on local, scalar variables. It is not
implemented on dynamically allocated variables, extern variables or static
variables. It is not implemented on structs, classes, unions or arrays. C/C++
only.

-ftrapuv
Traps uninitialized variables by setting any uninitialized local variables that are
allocated on the stack to a value that is typically interpreted as a very large
integer or an invalid address. References to these variables are then likely to
cause run-time errors that can help you detect coding errors. This option sets
-g.

-debug all
Enables debug information and control output of enhanced debug information.
To use this option, you must also specify the -g option.

-gen-interfaces -warn interfaces
Tells the compiler to generate an interface block for each routine in a source
file; the interface block is then checked with -warn interfaces

Options for handling floating-point exceptions:

-fpe{0|1|3}
Allows some control over floating-point exception (divide by zero, overflow,
invalid operation, underflow, denormalized number, positive infinity, negative
infinity or a NaN) handling for the main program at run-time. Fortran only.

-fpe0: underflow gives 0.0; abort on other IEEE exceptions⋅
-fpe3: produce NaN, signed infinities, and denormal results⋅

Default is -fpe3 with which all floating-point exceptions are disabled and
floating-point underflow is gradual, unless you explicitly specify a compiler
option that enables flush-to-zero. Use of -fpe3 on IA-64 systems such as
Columbia will slow run-time performance.

-fpe-all={0|1|3}
Allows some control over floating-point exception handling for each routine in
a program at run-time. Also sets -assume ieee_fpe_flags. Default is
-fpe-all=3. Fortran only.

-assume ieee_fpe_flags
Tells the compiler to save floating-point exception and status flags on routine
entry and restore them on routine exit. This option can slow runtime
performance. Fortran only.

-ftz

•

Recommended Intel Compiler Debugging Options 21

Flushes denormal results to zero when the application is in the gradual
underflow mode. This option has effect only when compiling the main
program. It may improve performance if the denormal values are not critical
to your application's behavior. For IA-64 systems (such as Columbia), -O3
sets -ftz. For Intel 64 systems (such as Pleiades), every optimization option O
level, except -O0, sets -ftz.

Options for handling floating-point precision:

-mp
Enables improved floating-point consistency during calculations. This option
limits floating-point optimizations and maintains declared precision. -mp1
restricts floating-point precision to be closer to declared precision. It has some
impact on speed, but less than the impact of -mp.

-fp-model precise
Tells the compiler to strictly adhere to value-safe optimizations when
implementing floating-point calculations. It disables optimizations that can
change the result of floating-point calculations. These semantics ensure the
accuracy of floating-point computations, but they may slow performance.

-fp-model strict
Tells the compiler to strictly adhere to value-safe optimizations when
implementing floating-point calculations and enables floating-point exception
semantics. This is the strictest floating-point model.

-fp-speculation=off
Disables speculation of floating-point operations. Default is
-fp-speculation=fast

-pc{64|80}
For Intel EM64 only. Some floating-point algorithms are sensitive to the
accuracy of the significand, or fractional part of the floating-point value. For
example, iterative operations like division and finding the square root can run
faster if you lower the precision with the -pc option. -pc64 sets internal FPU
precision to 53-bit significand. -pc80 is the default and it sets internal FPU
precision to 64-bit significand.

•

Recommended Intel Compiler Debugging Options 22

Totalview

DRAFT

This article is being reviewed for completeness and technical accuracy.

TotalView is a GUI-based debugging tool that gives you control over processes and thread
execution and visibility into program state and variables for C, C++ and Fortran
applications. It also provides memory debugging to detect errors such as memory leaks,
deadlocks and race conditions, etc.

Totalview allows you to debug serial, OpenMP, or MPI codes.

Totalview is available on both Pleiades and Columbia. See Totalview Debugging on
Pleiades for some basic instructions on how to start using Totalview on Pleiades.

See Totalview Debugging on Columbia for some basic instructions on how to start using
Totalview on Columbia.

Totalview 23

Totalview Debugging on Pleiades

DRAFT

This article is being reviewed for completeness and technical accuracy.

TotalView is an advanced debugger for complex and parallel codes. Its versions have been
installed as modules. To find out what versions of totalview are available, use the 'module
avail' command.

There are additional steps needed in order to start the TotalView GUI. You'll need to rely on
the ForwardX11 feature of your ssh. First, you'll have to make sure that your sysadmin had
turned on ForwardX11 when SSH was installed on your system or use the -X or -Y (if
available) options of ssh to enable X11 forwarding for your SSH session.

For debugging on a back-end node, do:

Compile your code with -g•

Start a PBS session. For example:

% qsub -I -V -lselect=2:ncpus=8,walltime=1:00:00

•

Test the X11 forwarding with xlock

% xclock

•

Load the totalview module

% module load apps/etnus/totalview.8.6.2-1

•

Set the environment variable TOTALVIEW

% setenv TOTALVIEW `which totalview` (for csh users)
or
% export TOTALVIEW=`which totalview` (for bash users)

•

Start TotalView debugging

For serial applications:

Simply start totalview with your application as an argument

% totalview ./a.out

◊

♦

•

Totalview Debugging on Pleiades 24

http://www.nas.nasa.gov/kb/Modules_115.html

If your application requires arguments:

% totalview ./a.out -a app_arg_1 app_arg_2

For MPI applications:

Make sure you load the appropriate modules, including the compiler,
and mpi module. For example:

For applications built with SGI's MPT, make sure that you have loaded
the latest MPT module:

% module load comp-intel/11.1.072
% module load mpi-sgi/mpt.1.26

For applications built with MVAPICH:

% module load comp-intel/11.1.072
% module load mpi-mvapich2/1.4.1/intel

1.

Launch totalview by typing "totalview" all by itself. Once the totalview
windows pop up, you will see four tabs in the "New Program" window:
Program, Arguments, Standard I/O and Parallel.

2.

Fill in the executable name in the "Program" box or use the Browse
button to find the executable

3.

Give any arguments to your executable by clicking on the "Arguments"
tab and filling in what you need. If you need to redirect input from a file,
do so by clicking the "Standard I/O" tab and filling in what you need.

4.

In the "Parallel" tab, select the parallel system option MVAPICH2 or
mpt_1.26 depending on which version of MPI you have compiled with.

5.

Enter in the number of processes in the 'tasks' box; leave the 'nodes'
field 0. For example, if you run your application with 2 nodes x 4 MPI
processes/node = 8 processes in total, fill in 8 in the 'tasks' box and 0
in the 'node' box.

6.

Then press "Go" to start. Note that it may initially dump you into the
mpiexec assembler source which is not your own code.

7.

Respond to the popup dialog box which says "Process xxx is a parallel
job. Do you want to stop the job now?" Choose "No" if you just want to
run your application. Choose "Yes" if you want to set breakpoint in your
source code or do other tasks before running.

8.

♦

Totalview Debugging on Pleiades 25

More information about TotalView can be found at the Totalview online documentation
website.

Totalview Debugging on Pleiades 26

http://www.roguewave.com/products/totalview-family/totalview.aspx
http://www.roguewave.com/products/totalview-family/totalview.aspx

Totalview Debugging on Columbia

DRAFT

This article is being reviewed for completeness and technical accuracy.

TotalView is an advanced debugger for complex and parallel codes. It has been installed as
modules. To find out what versions of totalview are available, use the command 'module
avail totalview'.

You'll need to rely on the ForwardX11 feature of your ssh. First, you'll have to make sure
that your sysadmin had turned on ForwardX11 when SSH was installed on your local
system or use the -X or -Y (if available) options of ssh to enable X11 forwarding for your
SSH session.

For debugging on the front-end cfe2, do:

Login to the front-end cfe2•

Compile your code with -g•

Make sure that X11 forwarding works and test it with xclock

cfe2%echo $DISPLAY
cfe2:xx.0
cfe2%xclock

•

Load the totalview module

cfe2% module load totalview.8.9.0-1

•

Start totalview. For serial jobs:

cfe2% totalview a.out

For MPI jobs built with SGI's MPT library:

cfe2% totalview mpirun.real -a -np xxx a.out

•

For debugging on a back-end node, do:

Compile your code with -g•

Start a PBS session and pass in the environment variable DISPLAY. Assuming
PBS assign your job to run on Columbia21

•

Totalview Debugging on Columbia 27

cfe2% qsub -I -v DISPLAY -lncpus=8,walltime=1:00:00

Test the X11 forwarding with xlock

PBS(8cpus)columbia21% xclock

•

Load the totalview module

PBS(8cpus)columbia21% module load totalview.8.9.0-1

•

Start totalview. For serial jobs:

PBS(8cpus)columbia21% totalview a.out

For MPI jobs built with SGI's MPT library:

PBS(8cpus)columbia21% totalview mpirun.real -a -np xxx a.out

•

More information about TotalView can be found at the Totalview online documentation
website.

Totalview Debugging on Columbia 28

http://www.roguewave.com/products/totalview-family/totalview.aspx
http://www.roguewave.com/products/totalview-family/totalview.aspx

IDB

DRAFT

This article is being reviewed for completeness and technical accuracy.

The Intel Debugger is a symbolic source code debugger that debugs programs compiled by
the Intel Fortran and C/C++ Compiler, and the GNU compilers (gcc, g++).

IDB is included in the Intel compiler distribution. For IA-64 systems such as Columbia, both
the Intel 10.x and 11.x compiler distributions provide only an IDB command-line interface.
To use IDB on Columbia, load an Intel 10.x or 11.x compiler module. For example:

%module load intel-comp.11.1.072
%idb
(idb)

For Intel 64 systems such as Pleiades, a command-line interface is provided in the 10.x
distribution and is invoked with the command idb just like on Columbia. For the Intel 11.x
compilers, both a graphical user interface (GUI), which requires a Java Runtime, and a
command-line interface are provided. The command idb invokes the GUI interface by
default. To use the command-line interface under 11.x compilers, use the command idbc.
For example:

%module load comp-intel/11.1.072 jvm/jre1.6.0_20
%idb
.... This will bring up an IDB GUI

%module load comp-intel/11.1.072
%idbc
(idb)

Be sure to compile your code with the -g option for symbolic debugging.

Depending on the Intel compiler distributions, the Intel Debugger can operate in either the
gdb mode, dbx mode or idb mode. The available commands under these modes are
different.

For information on IDB in the 10.x distribution, read man idb.

For information on IDB in the 11.x distribution, read documentations under pfe or
cfe2:/nasa/intel/Compiler/11.1/072/Documentation/en_US/idb

IDB 29

http://www.nas.nasa.gov/kb/Modules_115.html

GDB

DRAFT

This article is being reviewed for completeness and technical accuracy.

The GNU Debugger, GDB, is available on both Pleiades and Columbia under /usr/bin. It
can be used to debug programs written in C, C++, Fortran and Modula-a.

GDB can do four main kinds of things (plus other things in support of these) to help you
catch bugs in the act:

Start your program, specifying anything that might affect its behavior.•
Make your program stop on specified conditions.•
Examine what has happened, when your program has stopped.•
Change things in your program, so you can experiment with correcting the effects of
one bug and go on to learn about another.

•

Be sure to compile your code with -g for symbolic debugging.

GDB is typically used in the following ways:

Start the debugger by itself
%gdb
(gdb)

•

Start the debugger and specify the executable
%gdb your_executable
(gdb)

•

Start the debugger, and specify the executable and core file
%gdb your_executable core-file
(gdb)

•

Attach gdb to a running process
%gdb your_executable pid
(gdb)

•

At the prompt (gdb), type in commands such as break for setting a breakpoint, run for
starting to run your executable, step for stepping into next line, etc. Read man gdb to learn
more on using gdb.

GDB 30

Using pdsh_gdb for Debugging Pleiades PBS Jobs

DRAFT

This article is being reviewed for completeness and technical accuracy.

A script called pdsh_gdb, created by NAS staff Steve Heistand, is available on Pleiades
under /u/scicon/tools/bin for debugging PBS jobs while the job is running.

Launching this script from a Pleiades front-end node allows one to connect to each
compute node of a PBS job and create a stack trace of each process. The aggregated
stack trace from each process will be written to a user specified directory (by default, it is
written to ~/tmp).

Here is an example of how to use this script:

pfe1% mkdir tmp
pfe1% /u/scicon/tools/bin/pdsh_gdb -j jobid -d tmp -s -u nas_username

More usage information can be found by launching pdsh_gdb without any option:

pfe1% /u/scicon/tools/bin/pdsh_gdb

Using pdsh_gdb for Debugging Pleiades PBS Jobs 31

Porting to Pleiades

Recommended compiler options

DRAFT

This article is being reviewed for completeness and technical accuracy.

Intel compiler versions 10.0, 10.1, 11.0, 11.1, and 12.0 are available on Pleiades as
modules. Use the 'module avail' command to find available versions. Since NAS does not
set a default version for users on Pleiades, be sure to use the 'module load ...' command to
load the version you want to use.

In addition to the few flags mentioned in the article Recommended Intel Compiler
Debugging Options, here are a few more to keep in mind:

Turn on optimization: -O3

If you do not specify an optimization level (-On, n=0,1,2,3), the default is -O2. If you want
more aggressive optimizations, you can use -O3. Note that using -O3 may not improve
performance for some programs.

Generate optimized code for a processor type: -xS, -xSSE4.1 or -xSSE4.2

Intel version 10.x, 11.x and 12.x compilers provide flags for generating optimized codes
specialized for various instruction sets used in specific processors or microarchitectures.

Processor Type Intel V10.x Intel V11.x and above
Harpertown -xS -xSSE4.1
Nehalem-EP

Westmere-EP
N/A -xSSE4.2

Since the instruction set is upward compatible, an application which is compiled with
-xSSE4.1 can run on either Harpertown or Nehalem-EP or Westmere-EP processors. An
application which is compiled with -xSSE4.2 can run ONLY on Nehalem-EP and
Westmere-EP processors.

If your goal is to get the best performance out of the Nehalem-EP/Westmere-EP
processors, it is recommended that you do the following:

Use either Intel 11.x or 12.x compilers as they are designed for•

Porting to Pleiades 32

http://www.nas.nasa.gov/kb/Modules_115.html

Nehalem-EP/Westmere-EP micro-architecture optimizations.

Use the Nehalem-EP/Westmere-EP processor specific optimization flag -xSSE4.2

Warning: Running an executable built with the -xSSE4.2 flag on
the Harpertown processors will result in the following error:

Fatal Error: This program was not built to run on the processor in your system. The
allowed processors are: Intel(R) processors with SSE4.2 and POPCNT instructions
support.

•

If your goal is to have a portable executable that can run on either Harpertown or
Nehalem-EP or Westmere-EP, you can choose one of the following approaches:

use none of the above flags•
use -xSSE4.1 (with version 11.x and 12.x compilers)•
use -O3 -ipo -axSSE4.2,xSSE4.1(with version 11.x and 12.x compilers).

This allows a single executable that will run on any of the three Pleiades processor
types with suitable optimization to be determined at run time.

•

Turn inlining on: -ip or -ipo

Use of -ip enables additional interprocedural optimizations for single file compilation. One of
these optimizations enables the compiler to perform inline function expansion for calls to
functions defined within the current source file.

Use of -ipo enables multifile interprocedural (IP) optimizations (between files). When you
specify this option, the compiler performs inline function expansion for calls to functions
defined in separate files.

Use a specific memory model: -mcmodel=medium and -shared-intel

Should you get a link time error relating to R_X86_64_PC32, add in the compiler option of
-mcmodel=medium and the link option of -shared-intel. This happens if a common block is
> 2gb in size.

Turn off all warning messages: -w -vec-report0 -opt-report0

Use of -w disables all warnings; -vec-report0 disables printing of vectorizer diagnostic
information; and -opt-report0 disables printing of optimization reports.

Parallelize your code: -openmp or -parallel

-openmp handles OMP directives and -parallel looks for loops to parallelize.

Recommended compiler options 33

For more compiler/linker options, read man ifort, man icc, or

%ifort -help
%icc -help

Recommended compiler options 34

With SGI's MPT

DRAFT

This article is being reviewed for completeness and technical accuracy.

Among the many MPI libraries installed on Pleiades, it is recommended that you start with
SGI's MPT library.

The available SGI MPT modules are:

mpi/mpt.1.25
mpi-sgi/mpt.1.26
mpi-sgi/mpt.2.04.10789

There is no default MPT version set, but you are recommended to start with the MPT
2.04.10789 version by loading the mpi-sgi/mpt.2.04.10789 module. You should load the
same module when you build your application on the front-end node and also inside your
PBS script for running on the back-end nodes.

Note: Pleiades uses an InfiniBand (IB) network for interprocess RDMA (remote direct
memory access) communications and there are two InfiniBand fabrics, designated
as ib0 and ib1. In order to maximize performance, SGI advises that the ib0 fabric be used
for all MPI traffic. The ib1 fabric is reserved for storage related traffic. The default
configuration for MPI is to use only the ib0 fabric.

Environment Variables

When you load an MPT module, several paths (such as CPATH, C_INCLUDE_PATH,
LD_LIBRARY_PATH, etc) and MPT or ARRAYD related variables are set or modified. For
example, with the mpi-sgi/mpt.2.04.10789 module, the following MPT and ARRAYD related
variables are reset to some non-default values:

setenv MPI_BUFS_PER_HOST 256
setenv MPI_IB_TIMEOUT 20
setenv MPI_IB_RAILS 2
setenv MPI_DSM_DISTRIBUTE 0 (for Harpertown processors)
setenv MPI_DSM_DISTRIBUTE 1 (for Nehalem-EP and Westmere-EP processors)
setenv ARRAYD_CONNECTTO 15
setenv ARRAYD_TIMEOUT 180

The meanings of these variables and their default values are:

MPI_BUFS_PER_HOST

Determines the number of shared message buffers (16 KB each) that MPI is to

•

With SGI's MPT 35

http://www.nas.nasa.gov/kb/Modules_115.html

allocate for each host (i.e., Pleiades node used in the run). These buffers are used to
send and receive long inter-host messages.

Default: 96 pages (1 page = 16KB)
MPI_IB_TIMEOUT

When an IB card sends a packet it waits some amount of time for an ACK packet to
be returned by the receiving IB card. If it does not receive one it sends the packet
again. This variable controls that wait period. The time spent is equal to 4 * 2 ^
MPI_IB_TIMEOUT microseconds.

Default: 18

•

MPI_IB_RAILS

If the MPI library uses the IB driver as the inter-host interconnect it will by default use
a single IB fabric. If this is set to 2, the library will try to make use of multiple
available separate IB fabrics (e.g. ib0 and ib1) and split its traffic across them. If the
fabrics do not have unique subnet IDs then the rail-config utility is required to have
been run by the system administrator to enable the library to correctly use the
separate fabrics.

Default: 1

•

MPI_DSM_DISTRIBUTE

Activates NUMA job placement mode. This mode ensures that each MPI process
gets a unique CPU and physical memory on the node with which that CPU is
associated. This feature can also be overridden by using dplace or omplace. This
feature is most useful if running on a dedicated system or running within a cpuset.

Default: Enabled for MPT.1.26; Not Enabled for MPT.1.25

•

ARRAYD_CONNECTTO

Tuning this variable is useful when you want to run jobs through arrayd across a
large cluster, and there is network congestion. Setting this variable to a higher value
might slow down some array commands when a host is unavailable but it will help to
prevent MPI start up problems due to connection time-out.

Default: 5 seconds

•

ARRAYD_TIMEOUT

Tuning this variable is useful when you want to run jobs through arrayd across a
large cluster, and there is network congestion. Setting this variable to a higher value
might slow down some array commands when a host is unavailable but it will help to

•

With SGI's MPT 36

prevent MPI start up problems due to connection time-out.

Default: 45 seconds

For more MPT related variables, read man mpi after loading an MPT module. Some of
them may be useful for some applications or for debugging purposes on Pleides. Here are
a few of them for you to consider:

MPI_BUFS_PER_PROC

Determines the number of private message buffers (16 KB each) that MPI is to
allocate for each process (i.e. MPI rank). These buffers are used to send long
messages and intrahost messages.

Default: 32 pages (1 page = 16KB)

•

MPI_IB_FAILOVER

When the MPI library uses IB and a connection error is detected, the library will
handle the error and restart the connection a number of times equal to the value of
this variable. Once there are no more failover attempts left and a connection error
occurs, the application will be aborted.

Default: 4

•

MPI_COREDUMP

Controls which ranks of an MPI job can dump core on receipt of a core-dumping
signal. Valid values are NONE, FIRST, ALL, or INHIBIT. NONE means that no rank
should dump core. FIRST means that the first rank on each host to receive a
core-dumping signal should dump core. ALL means that all ranks should dump core
if they receive a core-dumping signal. INHIBIT disables MPI signal-handler
registration for core- dumping signals.

Default: FIRST

•

MPI_STATS (toggle)

Enables printing of MPI internal statistics. Each MPI process prints statistics about
the amount of data sent with MPI calls during the MPI_Finalize process.

Default: Not enabled

•

MPI_DISPLAY_SETTING

If set, MPT will display the default and current settings of the environmental variables

•

With SGI's MPT 37

controlling it.

Default: Not enabled

MPI_VERBOSE

Setting this variable causes MPT to display information such as what interconnect
devices are being used and environmental variables have been set by the user to
non-default values. Setting this variable is equivalent to passing mpirun the -v option.

Default: Not enabled

•

Building Applications

Building MPI applications with SGI's MPT library simply requires linking with -lmpi and/or
-lmpi++. See the article SGI MPT for some examples.

Running Applications

MPI executables built with SGI's MPT are not allowed to run on the
Pleiades front-end nodes.

You can run your MPI job on the back-end nodes in an interactive PBS session or through
a PBS batch job. After loading an MPT module, use mpiexec, not mpirun, to start your MPI
processes. For example:

#PBS -lselect=2:ncpus=8:mpiprocs=4:model=har
....
module load mpi-sgi/mpt.2.04.10789
mpiexec -np N ./your_executable

The -np flag (with N MPI processes) can be omitted if the value of N is the same as the
product of the value specified for select and that specified for mpiprocs.

Performance Issues

On Nehalem-EP and Westmere-EP nodes, if your MPI job uses all the processors in each
node (i.e, 8 MPI processes/node for Nehalem-EP and 12 MPI processes/node for
Westmere-EP), pinning MPI processes greatly helps the performance of the code. SGI's
mpi-sgi/mpt.2.04.10789 will pin processes by default by setting the environment variable
MPI_DSM_DISTRIBUTE to 1 (or true) when jobs are run on the Nehalem or Westmere
nodes. On Harpertown nodes, setting MPI_DSM_DISTRIBUTE to 1 is not recommended
due to a processor labeling issue.

If your MPI job do not use all the processors in each node, it is recommended that you
disable MPI_DSM_DISTRIBUTE by

With SGI's MPT 38

setenv MPI_DSM_DISTRIBUTE 0

and let the Linux kernel decide where to place your MPI processes. If you want to pin
processes explicitly, you can use dplace. Beware that with SGI's MPT, only 1 shepherd
process is created for the entire pool of MPI processes and the proper way of pinning using
dplace is to skip the shepherd process. In addition, knowledge of the processor labeling in
each processor type is essential when you use dplace. Below are the recommended ways
of pinning an 8 MPI process job with every 4 processes on 4 processor cores of a node:

Harpertown

mpiexec -np 8 dplace -s1 -c2,3,6,7 ./your_executable

•

Nehalem-EP

mpiexec -np 8 dplace -s1 -c2,3,4,5 ./your_executable

•

Westmere-EP

mpiexec -np 8 dplace -s1 -c4,5,6,7 ./your_executable

•

Further information about pinning can be found here.

With SGI's MPT 39

With MVAPICH

DRAFT

This article is being reviewed for completeness and technical accuracy.

On Pleiades, there are multiple modules of MVAPICH2 built with either gcc or Intel
compilers.

mpi-mvapich2/1.2p1/gcc
mpi-mvapich2/1.2p1/intel
mpi-mvapich2/1.2p1/intel-PIC
mpi-mvapich2/1.4.1/gcc
mpi-mvapich2/1.4.1/intel

The module mpi-mvapich2/1.2p1/intel-PIC was built with the -fpic compiler flag.

Building Applications

Here is an example of how to build an MPI application with MVAPICH2:

%module load mpi-mvapich2/1.4.1/intel
%module load comp-intel/11.1.072
%mpif90 program.f90

Running Applications

To run your job, submit your job through PBS. Within the PBS script, there are two ways to
run MPI applications built with MVAPICH2.

#PBS ..
...
module load mpi-mvapich2/1.4.1/intel
module load comp-intel/11.1.072

mpiexec -np TOTAL_CPUS your_executable

1.

#PBS ..
...
module load mpi-mvapich2/1.4.1/intel
module load comp-intel/11.1.072

mpirun_rsh -np TOTAL_CPUS -hostfile $PBS_NODEFILE your_executable

2.

Performance Issues

To pin processes, the MVAPICH library uses the environment variable
VIADEV_USE_AFFINITY, which does something similar to SGI's MPI_DSM_DISTRIBUTE.

With MVAPICH 40

http://www.nas.nasa.gov/kb/Modules_115.html

By default, VIADEV_USE_AFFINITY is set to 1.

If you wish to pin processes explicitly, beware that with MVAPICH, 1 shepherd process is
created for each MPI process. You can use the command

/u/scicon/tools/bin/qsh.pl jobid \
 'ps -C executable -L -opsr,pid,ppid,lwp,time,comm'

to see these processes of your running job. To properly pin MPI processes using dplace,
one cannot skip the shepherd processes. In addition, knowledge of the processor labeling
in each processor type is essential when you use dplace. Below are the recommended
ways of pinning an 8 MPI process job with every 4 processes on 4 processors of a node:

Harpertown

mpiexec -np 8 dplace -c2,3,6,7 ./your_executable

•

Nehalem-EP

mpiexec -np 8 dplace -c2,3,4,5 ./your_executable

•

Westmere-EP

mpiexec -np 8 dplace -c4,5,6,7 ./your_executable

•

Further information about pinning can be found here.

For more descriptions including the MVAPICH User Guide and other MVAPICH
publications, see http://mvapich.cse.ohio-state.edu.

With MVAPICH 41

http://mvapich.cse.ohio-state.edu

With Intel-MPI

DRAFT

This article is being reviewed for completeness and technical accuracy.

Intel's MPI library is another alternative for building and running your MPI application. The
available Intel MPI modules are:

mpi-intel/3.1.038
mpi-intel/3.1b
mpi-intel/3.2.011

To use Intel MPI, first create a file $HOME/.mpd.conf that has the single line:

MPD_SECRETWORD=sometext

('sometext' should be unique for each user)

and change the permission of the file to read/write by you only.

%chmod 600 $HOME/.mpd.conf

Building Applications

To compile, load an Intel compiler module and an Intel MPI module. Make sure that no
other MPI module is loaded (i.e., MPT, MVAPICH or MVAPICH2)

%module load mpi-intel/3.1.038
%module load comp-intel/11.1.072

Use the mpiifort/mpiicc scripts which invoke the Intel ifort/icc compilers.

%mpiifort -o your_executable program.f

Running Applications

To run it, in your PBS script make sure the intel MPI modules are loaded as above, start the
MPD daemon, use mpiexec, and terminate the daemon at the end. For example,

#PBS ..
..
module load mpi-intel/3.1.038
module load comp/intel/10.1.021_64

Note: The following three lines should really be in one line

With Intel-MPI 42

http://www.nas.nasa.gov/kb/Modules_115.html

mpdboot --file=$PBS_NODEFILE --ncpus=1 --totalnum=`cat $PBS_NODEFILE |
sort -u | wc -l` --ifhn=`head -1 $PBS_NODEFILE`
 --rsh=ssh --mpd=`which mpd` --ordered

CPUS_PER_NODE and TOTAL_CPUS below represent numerical numbers
for the job at hand

mpiexec -ppn CPUS_PER_NODE -np TOTAL_CPUS ./your_executable

terminate the MPD daemon

mpdallexit

With Intel-MPI 43

With OpenMP

DRAFT

This article is being reviewed for completeness and technical accuracy.

Building Applications

To build an OpenMP application, you need to use the -openmp Intel compiler flag:

%module load comp-intel/11.1.072
%ifort -o your_executable -openmp program.f

Running Applications

The maximum number of OpenMP threads an application can use on a Pleiades node
depends on (i) the number of physical processor cores in the node and (ii) if hyperthreading
is available and enabled. Hyperthreading technology is not available for the Harpertown
processor type. It is available and enabled at NAS for the Nehalem-EP and Westmere-EP
processor types. With hyperthreading, the OS views each physical core as two logical
processors and can assign two threads to it. This is beneficial only when one thread does
not keep the functional units in the core busy all the time and can share the resources in the
core with another thread. Running in this mode may take less than 2 times the walltime
compared to running only 1 thread on the core.

Before running with hyperthreading for your production runs, it is
recommended that you experiment with it to see if it is beneficial
for your application.

Maximum Threads

Processor Type Maximum Threads
without Hyperthreading

Maximum Threads
with Hyperthreading

Harpertown 8 N/A
Nehalem-EP 8 16
Westmere-EP 12 24

Here is sample PBS script for running OpenMP applications on a Pleiades Nehalem-EP
node without hyperthreading:

#PBS -lselect=1:ncpus=8:ompthreads=8:model=neh,walltime=1:00:00

module load comp-intel/11.1.072

cd $PBS_O_WORKDIR

With OpenMP 44

./your_executable

Here is sample PBS script with hyperthreading:

#PBS -lselect=1:ncpus=8:ompthreads=16:model=neh,walltime=1:00:00

module load comp-intel/11.1.072

cd $PBS_O_WORKDIR

./your_executable

With OpenMP 45

With SGI's MPI and Intel OpenMP

DRAFT

This article is being reviewed for completeness and technical accuracy.

Building Applications

To build an MPI/OpenMP hybrid executable using SGI's MPT and Intel's OpenMP libraries,
your code needs to be compiled with the -openmp flag and linked with the -mpi flag.

%module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789
%ifort -o your_executable prog.f -openmp -lmpi

Running Applications

Here is a sample PBS script for running MPI/OpenMP application on Pleiades using 3
nodes and on each node, 4 MPI processes with 2 OpenMP threads per MPI process.

#PBS -lselect=3:ncpus=8:mpiprocs=4:model=neh
#PBS -lwalltime=1:00:00

module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789
setenv OMP_NUM_THREADS 2

cd $PBS_O_WORKDIR

mpiexec ./your_executable

You can specify the number of threads, ompthreads, on the PBS resource request line,
which will cause the PBS prologue to set the OMP_NUM_THREADS environment variable.

#PBS -lselect=3:ncpus=8:mpiprocs=4:ompthreads=2:model=neh
#PBS -lwalltime=1:00:00

module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789

cd $PBS_O_WORKDIR

mpiexec ./your_executable

Performance Issues

For pure MPI codes built with SGI's MPT library, performance on Nehalem-EP and
Westmere-EP nodes improves by pinning the processes through setting
MPI_DSM_DISTRIBUTE envrionment variables to 1 (or true). However, for MPI/OpenMP
codes, all the OpenMP threads for the same MPI process have the same process ID and
setting this variable to 1 causes all OpenMP threads to be pinned on the same core and the

With SGI's MPI and Intel OpenMP 46

performance suffers.

It is recommended that MPI_DSM_DISTRIBUTE is set to 0 and omplace is to be used for
pinning instead.

If you use Intel version 10.1.015 or later, you should also set KMP_AFFINITY to disabled or
OMPLACE_AFFINITY_COMPAT to ON as Intel's thread affinity interface would interfere
with dplace and omplace.

#PBS -lselect=3:ncpus=8:mpiprocs=4:ompthreads=2:model=neh
#PBS -lwalltime=1:00:00

module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789

setenv MPI_DSM_DISTRIBUTE 0
setnev KMP_AFFINITY disabled

cd $PBS_O_WORKDIR

mpiexec -np 4 omplace ./your_executable

With SGI's MPI and Intel OpenMP 47

With MVAPICH and Intel OpenMP

DRAFT

This article is being reviewed for completeness and technical accuracy.

Building Applications

To build an MPI/OpenMP hybrid executable using MVAPICH and Intel's OpenMP libraries,
use mpif90, mpicc, mpicxx with the -openmp flag.

%module load comp-intel/11.1.072 mpi-mvapich2/1.4.1/intel
%mpif90 -o your_executable prog.f90 -openmp

Running Applications

With MVAPICH, a user's environment variables (such as VIADEV_USE_AFFINITY and
OMP_NUM_THREADS) are not passed in to mpiexec, thus they need to be passed in
explicitly, such as with /usr/bin/env.

Here is an example on how to run a MVAPICH/OpenMP hybrid code with a total of 12 MPI
processes and 2 OpenMP threads per MPI process:

#PBS -lselect=3:ncpus=8:mpiprocs=4:model=neh

module load comp-intel/11.1.072 mpi-mvapich2/1.4.1/intel

mpiexec /usr/bin/env VIADEV_USE_AFFINITY=0 OMP_NUM_THREADS=2 ./your_executable

Performance Issues

Setting the environment variable VIADEV_USE_AFFINITY to 0 disables CPU affinity
because MVAPICH does its own pinning. Setting it to 1 actually causes multiple OpenMP
threads to be placed on a single processor.

With MVAPICH and Intel OpenMP 48

Porting to Columbia

Default or Recommended compiler version and options

DRAFT

This article is being reviewed for completeness and technical accuracy.

Intel compiler versions 10.0, 10.1, 11.0 and 11.1 are available on Columbia as modules.
Use the 'module avail' command to find available versions.

The current default compiler module on Columbia is intel-comp.10.1.013.

In addition to the few flags mentioned in the article Recommended Intel Compiler
Debugging Options, here are a few more to keep in mind:

Turn on optimization: -O3

If you do not specify an optimization level (-On, n=0,1,2,3), the default is -O2. If you want
more aggressive optimizations, you can use -O3. Note that using -O3 may not improve
performance for some programs.

Turn inlining on: -ip or -ipo

Use of -ip enables additional interprocedural optimizations for single file compilation. One of
these optimizations enables the compiler to perform inline function expansion for calls to
functions defined within the current source file.

Use of -ipo enables multifile interprocedural (IP) optimizations (between files). When you
specify this option, the compiler performs inline function expansion for calls to functions
defined in separate files.

Parallelize your code: -openmp or -parallel

-openmp handles OMP directives and -parallel looks for loops to parallelize.

For more compiler/linker options, read man ifort, man icc, or

%ifort -help
%icc -help

Porting to Columbia 49

http://www.nas.nasa.gov/kb/Modules_115.html

Porting to Columbia: With SGI's MPT

DRAFT

This article is being reviewed for completeness and technical accuracy.

The available SGI MPT modules on Columbia are:

mpt.1.16.0.0
mpt.1.18.0.0
mpt.1.19.0.0
mpt.1.22.0.0
mpt.1.25

The current default version is mpt.1.16.0.0.

Environment Variables

On Columbia, when you load any of the above MPT modules, several environment
variables such as CPATH, INCLUDE, LD_LIBRARY_PATH, etc., are modified by
pre-pending the appropriate MPT directories. Also, the following MPT-related environment
variables are modified from their default values for improved performance:

setenv MPI_BUFS_PER_HOST 256
setenv MPI_BUFS_PER_PROC 256
setenv MPI_DSM_DISTRIBUTE

The meanings of these variables and their default values are:

MPI_BUFS_PER_HOST

Determines the number of shared message buffers (16 KB each) that MPI is to
allocate for each host (i.e., C21, C22, C23, C24). These buffers are used to send
and receive long inter-host messages.

Default: 32 pages (1 page = 16KB) for mpt.1.16, mpt.1.18, mpt.1.19, mpt.1.22
Default: 96 pages (a page = 16KB) for mpt.1.25

•

MPI_BUFS_PER_PROC

Determines the number of private message buffers (16 KB each) that MPI is to
allocate for each process. These buffers are used to send long messages and
intra-host messages.

Default: 32 pages (1 page = 16KB)

•

Porting to Columbia: With SGI's MPT 50

MPI_DSM_DISTRIBUTE (toggle)

Activates NUMA job placement mode. This mode ensures that each MPI process
gets a unique CPU and physical memory on the host with which that CPU is
associated. This feature can also be overridden by using dplace or omplace. This
feature is most useful if running on a dedicated system or running within a cpuset.

Default: Not enabled

•

Building Applications

Building MPI applications with SGI's MPT library simply requires linking with -lmpi and/or
-lmpi++. See the article SGI MPT for some examples.

Running Applications

MPI executables built with SGI's MPT are not allowed to run on the
Columbia front-end node.

You can run your MPI job on C21 - C24 in an interactive PBS session or through a PBS
batch job. Use mpiexec (under /PBS/bin) or mpirun to start your MPI processes. For
example:

#PBS -lncpus=8
....
mpiexec -np N ./your_executable

The -np flag (with N MPI processes) can be omitted if the value of N is the same as the
value specified for ncpus.

Porting to Columbia: With SGI's MPT 51

Porting to Columbia: With OpenMP

DRAFT

This article is being reviewed for completeness and technical accuracy.

Building Applications

To build an OpenMP application, you need to use the -openmp Intel compiler flag:

%ifort -o your_executable -openmp program.f

Note that if you are compiling separate files, then -openmp is required at the link step to link
in the OpenMP library.

Running Applications

Note that OMP_NUM_THREADS is set to 1 by default for PBS jobs. Reset it to the number
of threads that you want.

Here is a sample PBS script for running OpenMP applications on Columbia:

#PBS -lncpus=8,walltime=1:00:00

setenv OMP_NUM_THREADS 8

cd $PBS_O_WORKDIR

./your_executable

Porting to Columbia: With OpenMP 52

Porting to Columbia: With MPI and OpenMP

DRAFT

This article is being reviewed for completeness and technical accuracy.

Building Applications

To build a hybrid MPI+OpenMP application, you need to compile your code with the
-openmp compiler flag and link in both the Intel OpenMP and the SGI MPT library:

%ifort -o your_executable -openmp program.f -lmpi

Running Applications

Process/thread placement is critical to the performance of MPI+OpenMP hybrid codes. Two
environment variables should be set to get the proper placement:

MPI_DSM_DISTRIBUTE

Activates NUMA job placement mode. This mode ensures that each MPI process
gets a unique CPU and physical memory on the node with which that CPU is
associated. Currently, the CPUs are chosen by simply starting at relative CPU 0 and
incrementing until all MPI processes have been forked.

•

MPI_OPENMP_INTEROP

Setting this variable modifies the placement of MPI processes to better
accommodate the OpenMP threads associated with each process. For this variable
to take effect, you must also set MPI_DSM_DISTRIBUTE.

•

Also note that OMP_NUM_THREADS is set to 1 by default for PBS jobs. Reset it to the
number of threads that you want.

Here is a sample PBS script for running MPI+OpenMP hybrid (2 MPI processes, 4
OpenMP threads per MPI process) applications on Columbia:

#PBS -lncpus=8,walltime=1:00:00

setenv MPI_DSM_DISTRIBUTE
setenv MPI_OPENMP_INTEROP
setenv OMP_NUM_THREADS 4

cd $PBS_O_WORKDIR

mpirun -np 2 ./your_executable

Porting to Columbia: With MPI and OpenMP 53

	Table of Contents
	Porting & Developing Applications
	Porting & Developing: Overview
	Endian and Related Environment Variables or Compiler Options
	OpenMP

	Compilers
	Intel Compiler
	GNU Compiler Collection

	MPI Libraries
	SGI MPT
	MVAPICH

	Math & Scientific Libraries
	MKL
	SCSL
	MKL FFTW Interface

	Program Development Tools
	Recommended Intel Compiler Debugging Options
	Totalview
	Totalview Debugging on Pleiades
	Totalview Debugging on Columbia
	IDB
	GDB
	Using pdsh_gdb for Debugging Pleiades PBS Jobs

	Porting to Pleiades
	Recommended compiler options
	With SGI's MPT
	With MVAPICH
	With Intel-MPI
	With OpenMP
	With SGI's MPI and Intel OpenMP
	With MVAPICH and Intel OpenMP

	Porting to Columbia
	Default or Recommended compiler version and options
	Porting to Columbia: With SGI's MPT
	Porting to Columbia: With OpenMP
	Porting to Columbia: With MPI and OpenMP

